Communications

Electrochemical Catalysis of a 5-*Endo***-***Trig* **Cyclization in Bicontinuous Microemulsions**

Jianxin Gao and James F. Rusling*

Chemistry Department, U-60, University of Connecticut, Storrs, Connecticut 06269-4060

Received October 15, 1997

Microemulsions of oil, water, and surfactant are thermodynamically stable, macroscopically homogeneous, low toxicity alternatives to organic solvents.¹ Bicontinuous microemulsions have continuous, dynamic, intertwined oil and water microphases. They easily dissolve ionic catalysts and nonpolar reactants and are particularly useful for electrochemical catalytic synthesis and reaction control.^{2,3}

Construction of carbocycles⁴ is important in many organic syntheses. We recently used electrochemical catalysis with cobalt complexes⁵ in microemulsions to make *trans*-1-decalone in high yields from 2-(4-bromobutyl)-2-cyclohexen-1 one.3a

Generally, cyclizations follow Baldwin's rules.6 A 5-*endotrig* cyclization is disfavored, requiring severe distortions of bond angles and lengths to achieve the necessary reaction geometry. However, cyclizations can sometimes be directed

2649. (c) Kamau, G. N.; Hu, N.; Rusling, J. F. *Langmuir* **¹⁹⁹²**, *⁸*, 1042- 1044.

(3) (a) Gao, J.; Rusling, J. F.; Zhou, D.-L. *J. Org. Chem.* **¹⁹⁹⁶**, *⁶¹*, 5972- 5977. (b) Zhou, D.-L.; Carrero, H.; Rusling, J. F. *Langmuir* **¹⁹⁹⁶**, *¹²*, 3067- 3074.

(4) (a) Cooke, M. P., Jr.; Gopal, D. *Tetrahedron Lett.* **1994**, *35*, 2837–
2840. (b) Boger, D. L.; Mathvink, R. L. *J. Org. Chem.* **1992**, *57*, 1429–1443.
(c) Macdonald, T. L.; Mahalingam, S. *J. Am. Chem. Soc.* **1980**, $2115.$

(5) (a) Scheffold, R.; Rytz, G.; Walder, L. In *Modern Synthetic Methods*; Scheffold, R., Ed.; Wiley: New York, 1983; Vol. 3, pp 355-439. (b) Scheffold, R.; Abrecht, S.; Orlinski, R.; Ruf, H.-R.; Stamouli, P.; Tinembart, O.; Walder, L.; Weymuth, C. *Pure Appl. Chem.* **¹⁹⁸⁷**, *⁵⁹*, 363-372. (c) Pattenden, G. *Chem. Soc. Chem. Soc. Rev. Burgery, Chem. Soc. Phys. Chem.* 1988, 92, 1225– O.; Walder, L.; Scheffold, R. *Ber. Bunsen-Ges. Phys. Chem.* **¹⁹⁸⁸**, *⁹²*, 1225- 1231. (e) Inokochi, T.; Tsuji, M.; Kawafuchi, H.; Torri, S. *J. Org. Chem.* **¹⁹⁹¹**, *⁵⁶*, 5945-5948. (f) Torri, S.; Inokochi, T.; Yukama, T. *J. Org. Chem.* **¹⁹⁸⁵**, *⁵⁰*, 5875-5877. (g) Fry, A. J.; Singh, A. H. *J. Org. Chem.* **¹⁹⁹⁴**, *⁵⁹*, ⁸¹⁷²-8177. (h) Ozaki, S.; Nakanishi, T.; Sugiyama, M.; Miyamoto, C.; Ohmori, H. *Chem. Pharm. Bull.* **¹⁹⁹¹**, *³⁹*, 31-35.

(6) (a) Baldwin, J. E. *J. Chem. Soc., Chem. Commun.* **¹⁹⁷⁶**, 734-736. (b) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. *J. Chem. Soc., Chem. Commun.* **¹⁹⁷⁶**, 736-738.

(7) Janda, K. D.; Shevlin, C. G.; Lerner, R. A. *Science* **¹⁹⁹³**, *²⁵⁹*, 490- 493.

(8) For microemulsion preparation and characterization, see: (a) Ceglie, A.; Das, K. P.; Lindman, B. *Colloids Surf.* **1987**, 28, 29–40. (b) Georges, J.; Chen, J. W. *Colloids Polym. Sci.* **1986**, 264, 896–902.
Chen, J. W

(9) For preparation of **¹**, see: Taber, D. F. *J. Org. Chem.* **¹⁹⁷⁶**, *⁴¹*, 2649- 2650.

(10) Details of electrolysis are the same as in ref 3a.

(11) For NMR data on **2** and **3**, see the following. (a) ¹H NMR of **2**: Miyano, M.; Stealey, M. A. *J. Org. Chem.* **1982**, 47, 3186–3188. ¹³C NMR of **2**: Cicero, B. L.; Weisbuch, F.; Dana, G. *J. Org. Chem.* **1981**, 4 *Phosphorus, Sulfur Silicon* **¹⁹⁹³**, *⁷⁸*, 83-95.

(12) Scheffold, R.; Dike, M.; Dike, S.; Herold, T.; Walder, L. *J. Am. Chem. Soc.* **¹⁹⁸⁰**, *¹⁰²*, 3642-3643.

to a disfavored process. For example, a designed antibody catalyzed an otherwise disfavored 6-*endo*-*tet* ring closure.7 In this paper, we report dramatic improvement in the yield of disfavored 5-*endo*-*trig* cyclization product 4-hydrindanone **2** (eq 1) by using electrochemical catalysis in microemulsions made with cetyltrimethylammonium bromide (CTAB)8a or sodium dodecyl sulfate (SDS).^{8b}

Transformations of 2-(3-bromopropyl)-2-cyclohexen-1-one9 (1) were catalyzed by reducing 0.2 equiv of vitamin B_{12a} (cob-(III)alamine, Co(III)L) to Co(I)L in an electrochemical cell with a carbon cloth cathode at 25 °C. Key intermediate **5** (Scheme 1) was obtained by oxidative addition of **1** to Co(I)L, formed electrolytically at -0.9 V versus SCE.^{10,11} Upon photocleavage of **5** at this potential, the major product was 2-allyl-2-cyclohexen-1-one (**3**) in both the CTAB microemulsion and DMF (Table 1, entries 1 and 2). The yield of **2** was 20%, in agreement with Baldwin's rules.

The yield of 2 was increased to $62-70\%$ by using electrochemical cleavage at -1.5 V versus SCE in microemulsions (entries 3 and 4) in the dark. Yields of 2 at -1.5 V were again low in DMF, MeOH, and MeOH/water (4:1) (entries ⁵-7). Catalytic electrolysis of **¹** in DMF using vitamin B12a and a Hg cathode¹² at -1.54 V versus SCE gave 2% of 2 and 90% of **4**.

Photocleavage of the cobalt-carbon bond of **⁵** produces radical **7**5a-^c (Scheme 1), which can undergo hydrogen atom abstraction to form **4**, ¹³ the disfavored ring closure to form **2**, and coupling with Co(II)L and loss of $[Co-H]^{5c}$ to form **3**.

In electrochemical cleavage at -1.5 V, the reaction proceeds by a different pathway (Scheme 2). Carbanion **8**

^{(1) (}a) Rusling, J. F. In *Modern Aspects of Electrochemistry*; Conway, B.
E., Bockris, J. O'M., Eds.; Plenum Press: New York, 1994; No. 26, pp 49-
104 (b) Rusling J. F. In *Electroanalytical Chemistry*: Bard, A. J. Ed 104. (b) Rusling, J. F. In *Electroanalytical Chemistry*, Bard, A. J., Ed.;
Marcel Dekker: New York, 1994; Vol. 18, pp 1–88. (c) Bourrel, M.;
Schechter, R. S. *Microemulsions and Related Systems*; Marcel Dekker: New York, 1988. (d) Evans, D. F.; Mitchell, D. J.; Ninham, B. W. *J. Phys. Chem.* **1986**, *90*, 2817–2825. (d) Rusling, J. F.; Zhou, D.-L.; Gao, J. In Fundamen-
tals and Potential Applications of Electrochemical Synthesis, Weaver, R.
D.; Fisher, F.; Kalhammer, F. R.; Mazur, D., Eds.; Electrochemical
So

⁽¹³⁾ An authentic sample of **4** was prepared according to ref 9, by using 1-propyl bromide.

Table 1. Products from Catalytic Electrolyses of 1 Using Vitamin B12a

entry	reaction medium	$-E$, V, vs SCE	time. hour	2 $cis + trans$	yield, % ^a	
					3 ^b	4^b
1	CTAB μE^c	$0.9 +$ vis light	4	24	65	3
2	DMF/0.1 M TBAB ^d	$0.9 +$ vis light	4.5	21	51	9
3	CTAB μ E ^e	1.5	5	70 ^f	0	29
4	SDS μ E ^g	1.5	4	62 ^h	0	21
5	DMF/0.1 M TBAB	1.5	1.5	19	0	9
6	MeOH/0.1 M TBAB	1.6	1	7	0	50
7	MeOH/water $(4/1, v/v)/0.1$ M TBAB	1.5	2	10	0	85
8	CTAB/1-pentanol/ water (6%/7%/87%)	1.5		46	o	49

^a Average from GC analysis of three electrolyses, no starting material found in any electrolyses. *^b* **3**:**4** ratio estimated by 1H NMR. *^c* Microemulsion composition: CTAB/1-pentanol/tetradecane/water = 17.5/35/12.5/35 (wt %). ^{*d*} TBAB = tetrabutylammo-
nium_bromide_^e Electrolysis_at_ –1.5 V_without_vitamin_B13 nium bromide. *e* Electrolysis at -1.5 V without vitamin B₁₂ recovered 82% of **1** in CTAB microemulsion. *f Cist trans* = 4/1. recovered 82% of **¹** in CTAB microemulsion. *^f Cis*/*trans*) 4/1. *^g* SDS/1-pentanol/tetradecane/water) 13.3/26.6/8/52 (wt %). *hCis*/ $trans = 6.3/1.$

Scheme 2

formed by reduction of 5 is a likely intermediate.^{5a,b} This is strongly supported by the disappearance of **3**, which cannot form from $\mathbf{8}$, in the product mixtures (entries $3-8$). Cyclization of **8** is facilitated in the microemulsion to improve the yield of **2**.

Electrolysis at -1.5 V gave low yields of 2 in DMF and MeOH (entries 5 and 6), consistent with Baldwin's rules. Mass recoveries in these electrolyses were also low, suggesting routes to undetectable products.14 In 4:1 MeOH/ water, the yield of **2** remained low, but the yield of **4** increased to 85% (entry 7).

Electrolysis at -1.5 V in a CTAB/pentanol/water solution gave significantly less **2** (46%, entry 8), but nearly twice the amount of **4** compared to the CTAB microemulsion (entry 3). This result suggests that tetradecane is necessary for the best yields of **2**.

These results suggest that the pathway to **2** is faster than formation of **4** in the microemulsions. These fluids have surfactant layers at both oil-water and electrode-microemulsion interfaces.¹ The results also imply that the cyclization of **8** occurs at a site with a low concentration of proton donor, such as one of the interfacial surfactant layers, or in the oil phase. There is considerable precedent for a strong influence of surfactant films on electrodes in electrochemical catalysis. For example, bimolecular rate-determining steps can be enhanced by reactant preconcentration in a surfactant layer on an electrode in a microemulsion.^{1a,b,d,2b,c}

In summary, a 5-*endo*-*trig* cyclization was remarkably facilitated in microemulsions, providing a new example of electrochemical reaction control by these microheterogeneous fluids. The method provides an attractive alternative for the formation of fused five-membered rings under mild conditions.

Acknowledgment. This work was supported by Grant No. CTS-9632391 from the National Science Foundation. The authors thank James M. Bobbitt and De-Ling Zhou for helpful discussions.

Supporting Information Available: Details of experiments and characterization data (3 pages).

JO971897U

⁽¹⁴⁾ Preliminary spectroscopic analysis of catalyst recovered from DMF after electrolysis suggested the possibility of coupling of intermediates (e.g., **7** or **8**) with vitamin B_{12} .