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Microemulsions of oil, water, and surfactant are thermo-
dynamically stable, macroscopically homogeneous, low toxic-
ity alternatives to organic solvents.! Bicontinuous micro-
emulsions have continuous, dynamic, intertwined oil and
water microphases. They easily dissolve ionic catalysts and
nonpolar reactants and are particularly useful for electro-
chemical catalytic synthesis and reaction control.?3

Construction of carbocycles? is important in many organic
syntheses. We recently used electrochemical catalysis with
cobalt complexes® in microemulsions to make trans-1-deca-
lone in high yields from 2-(4-bromobutyl)-2-cyclohexen-1-
one.3a

Generally, cyclizations follow Baldwin’s rules.® A 5-endo-
trig cyclization is disfavored, requiring severe distortions of
bond angles and lengths to achieve the necessary reaction
geometry. However, cyclizations can sometimes be directed
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to a disfavored process. For example, a designed antibody
catalyzed an otherwise disfavored 6-endo-tet ring closure.”
In this paper, we report dramatic improvement in the yield
of disfavored 5-endo-trig cyclization product 4-hydrindanone
2 (eq 1) by using electrochemical catalysis in microemulsions
made with cetyltrimethylammonium bromide (CTAB) or
sodium dodecyl sulfate (SDS).80
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Transformations of 2-(3-bromopropyl)-2-cyclohexen-1-one®
(1) were catalyzed by reducing 0.2 equiv of vitamin B2, (cob-
(11)alamine, Co(ll1)L) to Co(l)L in an electrochemical cell
with a carbon cloth cathode at 25 °C. Key intermediate 5
(Scheme 1) was obtained by oxidative addition of 1 to Co(l)L,
formed electrolytically at —0.9 V versus SCE.1%11 Upon
photocleavage of 5 at this potential, the major product was
2-allyl-2-cyclohexen-1-one (3) in both the CTAB microemul-
sion and DMF (Table 1, entries 1 and 2). The yield of 2 was
20%, in agreement with Baldwin'’s rules.

The yield of 2 was increased to 62—70% by using electro-
chemical cleavage at —1.5 V versus SCE in microemulsions
(entries 3 and 4) in the dark. Yields of 2 at —1.5 V were
again low in DMF, MeOH, and MeOH/water (4:1) (entries
5—7). Catalytic electrolysis of 1 in DMF using vitamin By,
and a Hg cathode!? at —1.54 V versus SCE gave 2% of 2
and 90% of 4.

Photocleavage of the cobalt—carbon bond of 5 produces
radical 752—¢ (Scheme 1), which can undergo hydrogen atom
abstraction to form 4,13 the disfavored ring closure to form
2, and coupling with Co(ll)L and loss of [Co—H]>¢ to form 3.

In electrochemical cleavage at —1.5 V, the reaction
proceeds by a different pathway (Scheme 2). Carbanion 8

(13) An authentic sample of 4 was prepared according to ref 9, by using
1-propyl bromide.
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Table 1. Products from Catalytic Electrolyses of 1 Using
Vitamin Biza

~E,V, time 2 yield, %2
entry reaction medium vs SCE  hour cis+trans 3° 4
1 CTAB uE® 0.9+ 4 24 65 3
vis light
2 DMF/0.1 M TBABY 0.9 + 45 21 51 9
vis light
3 CTAB uE® 1.5 5 70f 0 29
4 SDS uES’ 15 4 62h 0 21
5 DMF/0.1 M TBAB 1.5 1.5 19 0 9
6 MeOH/0.1 M TBAB 1.6 1 7 0 50
7 MeOH/water 15 2 10 0 85
(4/1,viv)I0.2 M
TBAB
8 CTAB/1-pentanol/ 1.5 4 46 0 49

water (6%/7%/87%)

a Average from GC analysis of three electrolyses, no starting
material found in any electrolyses. ? 3:4 ratio estimated by 'H
NMR. ¢ Microemulsion composition: CTAB/1-pentanol/tetrade-
cane/water = 17.5/35/12.5/35 (wt %). @ TBAB = tetrabutylammo-
nium bromide. ¢ Electrolysis at —1.5 V without vitamin Bi»
recovered 82% of 1 in CTAB microemulsion. f Cis/trans = 4/1.
9 SDS/1-pentanol/tetradecane/water = 13.3/26.6/8/52 (wt %). "Cis/
trans = 6.3/1.
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formed by reduction of 5 is a likely intermediate.52b This
is strongly supported by the disappearance of 3, which
cannot form from 8, in the product mixtures (entries 3—8).
Cyclization of 8 is facilitated in the microemulsion to
improve the yield of 2.
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Electrolysis at —1.5 V gave low yields of 2 in DMF and
MeOH (entries 5 and 6), consistent with Baldwin'’s rules.
Mass recoveries in these electrolyses were also low, sug-
gesting routes to undetectable products.’* In 4:1 MeOH/
water, the yield of 2 remained low, but the yield of 4
increased to 85% (entry 7).

Electrolysis at —1.5 V in a CTAB/pentanol/water solution
gave significantly less 2 (46%, entry 8), but nearly twice the
amount of 4 compared to the CTAB microemulsion (entry
3). This result suggests that tetradecane is necessary for
the best yields of 2.

These results suggest that the pathway to 2 is faster than
formation of 4 in the microemulsions. These fluids have
surfactant layers at both oil—water and electrode—micro-
emulsion interfaces.! The results also imply that the
cyclization of 8 occurs at a site with a low concentration of
proton donor, such as one of the interfacial surfactant layers,
or in the oil phase. There is considerable precedent for a
strong influence of surfactant films on electrodes in electro-
chemical catalysis. For example, bimolecular rate-determin-
ing steps can be enhanced by reactant preconcentration in
a surfactant layer on an electrode in a microemulsion.1ab.dz2bc

In summary, a 5-endo-trig cyclization was remarkably
facilitated in microemulsions, providing a new example of
electrochemical reaction control by these microheteroge-
neous fluids. The method provides an attractive alternative
for the formation of fused five-membered rings under mild
conditions.
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(14) Preliminary spectroscopic analysis of catalyst recovered from DMF
after electrolysis suggested the possibility of coupling of intermediates (e.g.,
7 or 8) with vitamin Bj,.



